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Conformal geometry is more fundamental than a Riemannian one. Whereas 
Riemannian geometry determines lengths and angles, a conformal one 
determines only angles and ratios of length. Equivalently, conformal 
geometry of space-time determines light cones, or causal structure. No 
length scale is apriori distinguished. It can be distinguished only aposteriori, 
given a particular solution of matter field equations. Einstein's field equations 
of gravitation can be thought of as describing interaction of causal structure 
with a matter described by a real scalar massless field of weight 1/4. Electro- 
magnetic field equations need precisely a conformal structure. One can also 
write down field equations for a spin-l/2 Dirac massless field, given infor- 
mation about light cones only. The energy-momentum tensor density is 
obtained by vierbeim variations. 

1. C O N F O R M A L  STRUCTURE OF S P A C E - T I M E  

Let  M be a smooth ,  4-d imensional  manifold ,  thought  o f  as being a 
mode l  o f  space-t ime. Let  B ( M )  be the bundle  o f  l inear  frames over  M. Then  
B ( M )  is a pr incipal  bundle  with the s tructure g roup  GL(4). Let  G be a Lie 
subgroup  o f  GL(4). A G structure on M is a smoo th  subbundle  o f  B ( M ) ,  
with structure g roup  G. In many  interest ing cases the structure g roup  can be 
descr ibed as a g roup  leaving invar iant  some tensorial  object  on R ~. F o r  
example ,  to give M a pseudo-R iemann ian  structure is to give it an O(1, 3) 
structure,  and  O(1, 3) is a subgroup  o f  GL(4) leaving invar iant  the s t anda rd  
metr ic  tensor  ~ = ~ab = diag (1, - 1, - 1, - 1). Similarly,  to give M a con- 
fo rmal  s t ructure  (plus or ienta t ion)  is to give it a CO+(1,  3) structure,  and  
CO+(1,  3) is the g roup  o f  all A ~ GL(4) leaving invar ian t  (pseudo) tensor  

9 ab Xca = �89 tb (1.1) 
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Let P be a conformal structure on M. The frames in P are called conformal 
frames (of the first order). According to a general theorem (see, for example, 
Kobayashi,  1972), P is integrable (flat) iff each point of M admits a coordinate 
neighborhood, with local coordinates x ~ . . . .  , x 3, with respect to which the 
components of X coincide with the standard ones [equation (1. I)]. The tensor 
X is nothing but a Hodge �9 operator restricted to 2-forms. Therefore, modulo 
topological subtleties, to give M a conformal structure is to give it a smooth 
�9 operation acting linearly on the bundle of 2-forms, and satisfying (i) ,2 = 
- I ,  and (ii) *F A P = F A , F  (Jadczyk, 1978). Though x determines con- 
formal structure completely, it is much more convenient to deal with a tensor 
density 7r~ uniquely defined by 

m n  x , q  = �89 ,s" = - b , p ~ y ~ S  ~m~ ( 1 . 2 )  

(Gfirsey, 1963, makes use of  7 in his "reformulation of general relativity in 
accordance with Mach's principle".) An equivalent definition of 7 can be 
described as follows" let (x ~) be a local coordinate system, and let (Ea) be a 
local section of the bundle of conformal frames (conformal vierbeim field). 
Let Ea = E,~c~m, where ~m are the tangents to coordinate lines. Define then 

7 -1 = 7 m" = [det E I-1/2E~-l(tE) (1.3) 

Then 7r~ is, in fact, independent of E, and is a symmetric tensor density 
of weight W(7,~,) =-�89 and det 7 = -  1. As it was above, a conformal 
structure is fiat iff there are local coordinate systems in which 7m, = ~ , .  
As is well known, a necessary and sufficient condition for the existence of 
such a coordinate system is that the Weyl conformal curvature tensor (which 
can be expressed in terms of 7r~, only) vanishes identically. 

Assume now that a conformal structure 7 is given. Let go be a scalar 
density of weight W(go) = 1[4. Then gmn := go27m~ is a metric tensor on M. 
In this way one gets a correspondence between conformal structures and 
classes of  conformally equivalent Riemannian metrics. It  follows, in particular, 
that each scalar density of weight 1/4 determines a symmetric affine connec- 
tion preserving the conformal structure. However, contrary to the Rieman- 
nian case, no such an affine connection is distinguished. 

2. C O N F O R M A L  FIELD EQUATIONS 

Usually a field equation is said to be conformally invariant if it refers 
to the fiat conformal structure of the Minkowski space, and is invariant under 
the whole 15-parameter group of local conformal automorphisms. To check 
whether this holds one has to specify transformation properties of the field 
under these automorphisms. It  is then usually possible to deduce from these 
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transformation laws what kind of a geometric object we are dealing with. 
It is also natural to assume that the field equations (and a Lagrangean) 
can be expressed in terms of the conformal structure only. However, the 
situation here is not as simple as in the Riemannian case, since no 
prescription such as "replace derivatives by the covariant ones" is possible. 
Indeed, if we have a differential operator D acting on sections of some fiber 
bundle of geometrical objects, and if D can be canonically expressed in terms 
of the conformal structure only, then the manifold of  solutions of the 
equation D(.)  = 0 is invariant under all automorphisms of the conformal 
structure (if such automorphisms exist). In particular, in flat Minkowski 
space, the equation is automatically invariant under the 15-parameter con- 
formal group, and transformation laws of  the field follow then from its 
geometrical character. Restricting ourselves to first-order, linear objects, it is 
enough to specify a representation of CO+(1, 3) on some vector space. In the 
case of conformal spinors two-valued representations are allowed. But, 
since CO+(1, 3) = S O ( l ,  3) x R +, to specify a geometric character of the 
field means to specify its tensorial or spinorial character, and a representation 
of dilations which commute with proper Lorentz transformations. If  Z ~ Z ~ 
is a representation of dilations, it is usual that only for quite special values o f k  
(canonical dimension) can one find canonical linear operators acting on 
sections of the corresponding associated bundle. This will be illustrated for 
scalar and spinorial fields. In both cases, however, the canonical operator 
itself has a dimension, i.e., is a map from one associated bundle to another. 
Nevertheless, in the discussed cases one easily finds an invariant Lagrangean, 
and energy-momentum tensor density can be defined by taking variation over 
the vierbeim 

0L --l"m 2znm:=~---~an(P-, ) a (2.1) 

It is a 1-form with values in vector densities of weight W = I, and is auto- 
matically traceless, symmetric, i.e., y ,~T ,  ~ = y,~rTmL Moreover, T is conserved 
in the following sense: if J( is a vector field, and if Tx m := T ,  mJ( '~, then 

a , J x  m := ~Tr,GPx(y ~*) (2.2) 

where A~ is the Lie derivative with respect to X. In particular, ~ m T x  m : 0 

if X is a Killing vector field of the conformal structure. 

3. SCALAR FIELD 

Let ~o be a scalar field of  weight W(~) = k, k ~ 0. With respect to a 
vierbeim field E, ~ takes the value q~(E) = tdet E I ~ .  It follows that for 
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dilations ~0(AE) = A4k~o(E). The simplest method to guess a Lagrangean is 
by observing that gmn = cPk127mn is a symmetric tensor. Therefore we take 

L = �89 gll/2R(g) (3.1) 

The stationary action principle gives then the following field equation: 

([~ q- ~k/~)~ = (1 - 4 k ) q ) - l ( O m q ) ) 8 m c p  (3.2) 

where 

~-] _~. C3m,/mnc~ n 

and _~ is obtained from 7 according to the "take a scalar curvature" prescrip- 
tion. This equation is linear only for k = 1/4 (see Sigal, 1974, for a comple- 
mentary statement), and reduces to a simple "wave equation": 

( ~  + ~k)~0 = 0 (3.3) 

[See Penrose, 1965, where (3.3) is also considered in slightly different lan- 
guage.] If  the conformal structure is integrable, one can choose local co- 
ordinates in which 7m~ = ~Tm~, and one gets the familiar [3cp = 0. It is worth- 
while to note that if a "cosmological term" is added to the Lagrangean (3.1), 
we get 2~ 3 as the term on the right-hand side of (3.3). Still restricting ourselves 
to the case of W(~) = 1/4, i.e., cp(2E) = ;~(E), one easily gets the energy- 

momentum "tensor" (here c19 m d f Omq) ' r = 7rnn~On) : 

Z n  m = q)racpn - -  �88 r - -  � 8 9  n 

-t- ~ n m ~ - ] q 9  - -  �88  m - -  � 8 9  m) (3.4) 

Of course, one can eliminate the term containing ~ o  by use of the field 
equation. It follows, in particular, that gravitation may be considered as a 
result of interaction of a conformal structure with a scalar density field of 
weight 1/4 (canonical dimension). 

4. ELECTROMAGNETIC FIELD 

Electromagnetic field is described by its vector potential, i.e., a 1-form A. 
Then F =  dA, and L = - - � 8 8  , F .  The field equation is d , d A  = O. 
Clearly, only conformal structure is involved. Observe that there is a one-to- 
one correspondence between conformal structures and "constitutive tensors 
of matter-free space" (cf. Post, 1962). The energy-momentum tensor is the 
standard One. 

5. SPIN-l/2 MASSLESS DIRAC FIELD 

To discuss spinors one has to look at representations of the covering 
group of CO+(1, 3). Let (7,) be a fixed set of 7 matrices in C ~, so that 
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[~,  ~'b] + = 2~7~. They generate the Clifford algebra of the Minkowski space. 
Consider the group G of all elements S of the algebra satisfying the following: 
(i) S~,aS- ~ = ~,bAa b, (ii) S is an even element of the algebra, and (iii) S S  s > O, 
where @ ~ - . .  ~,,~)J = y ~ . - - ~ , ~ .  Define the two-to-one homomorphism p 
of G into GL(4) by 

Sy,~S'  = det A (S)-~?,b A (S)~ b 

to which there corresponds the following representation of the Lie algebra 
of  CO+(1, 3): 

M k-+ D ( M )  = - 3 Tr (M) + ~Mab[~,c,, ~'b] (5.1) 

Assume now that F is a complex vector bundle over M with a typical fiber 
C 4, and let P be a reduction to G of the bundle of complex frames of F. 
Finally, let q be a homomorphism of P into B ( M ) ,  which commutes with the 
representation p. If  ~'is a local section of P, then q(L e) ~ E is a vierbeim field, 
and q is uniquely determined by E, if L ~ is fixed. Let us fix q. Then define 

7(E) "~ = det 

It is easy to see that 7 m does not, in 
transformations x m ~ x m" one has 

so that 

(E)- I/*Eo~,~ (5.2) 

fact, depend on/~. Under coordinate 

1/4 ~xm' ~m 

determines a 'conformal structure on M (which, of course depends on q). 
There is no distinguished linear connection in M (however, it is easy to see 
that there is a canonical nonlinear one). Let q~ be any scalar density of weight 
1/4, and let gmn = q)2'Ymn" Consider the Levi-Civitta connection of gin,. By 
continuity this connection lifts by the bundle homomorphism q to the bundle 
P, and thus to/7. Let V be the corresponding covariant derivative acting on 
spinor fields (i.e., sections of F). V depends now on ~0. However, owing to 
the fact that we have chosen a power " - 1 "  in the definition of  a group 
homomorphism p, the operator D := ~'mVm happens to be independent of % 
Explicitly, 

(Dr = "ym~rar "t- ~[E 1-1/4gam(g-1)nb(rqmgCn)~/abcr 

and D is independent of  L e, and of the coordinate system. Here r are the 
components of  r with respect to the complex basis ~, i.e., r  e C 4. The 
Dirac equation now reads De = 0. Observe that D gives to r an additional 
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weight 1/4. To  find an invariant  Lagrangean we have to define a scalar 
p roduc t  between sections of  F. The following definition 

(~, ~') ~- ] E l - a / ~ ( E ) ~ ' ( ~ )  

is independent  of  E, and is a scalar density of  weight 3/4. I t  follows that  
(~, ~b)- 1/3D~ is again a section of  F, so that  we can define 

L = - I m  (~b, ~b)l/a(~b, (r $) - l lSD~)  

which is a density of  weight + 1, as it should be. Clearly one can always add 
a t e rm propor t iona l  to @, ~b) 4/a (compare  Giirsey, 1956). The  energy- 
m o m e n t u m  tensor  corresponding to this Lagrangean  has the fo rm 

i 
Tm n = - L 3 m  ~ + ~ ]ElS/4[~'~0m~ b - ~,~(0m~)~b] 

+i3  

7']1 +,b) 

Specifying to a flat case one should put  E = /, and take for  Ym s tandard  
Dirac matrices. I t  is worthwhile to observe that  if  we take (~b, ~b) ~/s for  % 
a theory of  gravi tat ion with gravitat ional  "poten t ia l "  of  spinorial character  
can be obtained. I t  is, however,  hopelessly nonlinear. 
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